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MODELING COALITIONAL VALUES

3 Egzzgducfion

The idea of a set of elements along with elementary notions about
subsets are fundamental concepts in modern mathecmatics and are well-known
to contemperary mathematics students. These elementary concepts, together
with some method for assigning numbers to various subsets of a given set,
arz often sufficient to begin applying the techniques of mathematical
modeling to a good number of interesting and nontrivial applications.

Many important situations are characterized to a large extent by describing

the set of participants involved and the values achievable by certain

subsets of these participants. Such applications occur in economics and
politics, business and operations research, the social and environmental
cclences, and elsewhere.

Our problems will begin with a set of participants who will be referred
to as players. The set of players may consist of a group of individual
citizens, an assembly of political parties, a collection of economic agents,
a set of business corporations or labor unions, an alliance of nations, a
meeting of individual decision makers as well as the ordinary players in a
parlor geme. Next, one can frequently assign, in some natural or straight-
forward manner, some sort of value to the different subsets of the set of
players. A subset of players will be referred to as a ccalition. In many
instances it is convenient to represent such coalitional values by a real
number. Such values may in some way measure economic worth, political
influence, taxes or subsidies, voter's pcwer, social position, or merely
points or monetary payments in a common game. Such values may only be of
a binary nature, such as distinguishing between winning or losing in some
contest such as an election. These coalitional values may depend only
upon the particular subset considered, or they may also relate to how the
remaining players partition themselves into coalitions. So the value of a
certain coalition may be given by a single number, or this value may vary
depending upon how the complementary :oalition subdivides itself into
subsets.

Given a set of players and the coalitional values for its subsets, one
can consider an array of interesting questions about how these values

(power, wealth, etc.) should or will be distributed among the participants.
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The resulting allocations may be arrived at by =on: bargaining procecure,

by some ethical principle or equity concept, by a fair division scheire,

by a ruling of a civil or family authority, or by some other social mechanism.
The set of all realizable distributions of the available values to the
players can often be represented by rather elementary concepts from algebra
and geometry.

The object of this paper is to present several illustrations of mathe-
matical modeling which are suitable for use in the undergraduate classroom
and which make use of only elementary mathematical notions. These can be
employed in the traditional lecture-homework format, or preferably in a more
open-ended or discovery approach in which the students attempt to develop
their own techniques and solutions. The main goal is for students to obtain
hands-on experience in the art of creating and analyzing non-routine
mathemctical models. These examples do relate to the theory of multiperson
cooperative games, although knowledge of this subject is not required. So
a secondary purpose of this paper is to provide illustrations of how this
theory is applied and to thus motivate students to undertake additiornal
studies in this direction. This approach should also demonstrate that the
theory of n-person cooperative games can be studied and applied without any
prior knowledge of noncooperative game theory, in particular without
knowledge of matrix games. Cur examples are taken from straightforward
bargaining situations, exchanges in economic markets, taxing diseconomies
caused by pollution or development, equitable sharing of costs among different
types of users of a service, distribution of voting power, and similar
situations. These illustrations are drastic simplifications of the sorts
of problems found in real applications. Nevertheless, the basic techniques
employed here can and have been extended to realistic case studies as will

be indicated in some of the references mentioned throughout the paper.




2. Basic Concerts

2.1. Players and Coalitions. We will begin our problems by focusing

on a set of distinct elements. The elements in our models will be the
participants in some sort of social interaction, and these participants
will be called players. We will label the players by the natural numbers
1,2,...,n and denote the set of all players by

= {1,2,...00%

s player as well as the total

The natural number n will thus represent the n
number n = |N| of participants involved in our models.

We will be concerned with the various subsets of N, i.e., sets S
whose elements are also elements of N. This is denoted by S € N, and
such subsets are referred to as coalitions. The set of all subsets of N

is denoted by M. For example, if N = {1,2,3}, then
N = {p,{1},{2},{3},11,2},{1,3},{2,3},M}

where @ denotes the empty set. The relation of "being a subset of" is

pictured in the following figure (or lattice diagram or cube).

{1,2} {1,3} {2,3}

{1} {2} {3}
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Exercises. (1) Prove that the number (2 of nonempty ccalitions
(subset) of the player set N is oy,
(2) Prove that for any n there is always just one more nonempty
coalition with an odd number of players than there is such coalitions with
an even number of players.
(3) <Show that the number of coalitions S in N with precisely
s = ISI players is given by the (s+l)St term in the binomial expansion
of (1+1)".
(4) Show how the lattice of coalitions for N = {1,2,3} corresponds
to the vertices of a cube in which each vertex is denoted by three coordinates
with entries of either 0 or 1. i
(5) Draw the lattice of all coalitions (including the empty set #)
for N = {1,2,3,4}.
(6) Show that the lattice of subsets for the set N = {1,2,3,4}
corresponds to a four-dimensional cube.
(7) Students familiar with the definitions of relation, function and

cartesian product can determine the number of (binary) relations on N, ]

the number of functions from N into N, the number of one-to-one
correspondences from N onto N, and the number of elements (i.e., ordered

pairs) in HNxN.

2.2. Values and Games. In many applications it is possible to assign

some measure or value v(S) to some or all of the ccalitions S in N.

Often the values v(S) can be expressed as real numbers. In practice

it may represent in some fashion the worth or power achievable by this
coalition if the players in S act in unison in order to obtain some
payoff or goal. So v(S) may be taken as the maximum coalitional payoffs
or outcomes which the group S can guarantee itself when this subset
undertakes joint action, and this value can be realized or exceeded inde-
pendently of how the players in the complementary coalition N-S act. In
other words v(S) describes the largest amount of some good or "utility"
which the coalition S can be certain to obtain if they act in a coopera-
tive manner. In other instances it seems reasonable to choose v(S) as

the amount to which the coalition S can be restricted to by its "opponents"

in N-S. In any event, such values frequently arise in a very natural or




obvious way in many applications. Such values may be merely approximations

cr estimates of sowe monetary or other measure available to S in some
interaction involving the players in N. Nevertheless, focusing on such
values may prove to be most insightful in modeling their activities, and
they may very well be an essential ingredient in any quantifiable investi-
gation of related social actions and outcomes. A rule (or functiocn) v
which assigns a real number v(S) to each coalition S in N is called

T . . N
a characteristic function. We can express this as v: 2° + R, where R

denotes the real numbers. It is common to assume that v(g) = 0 for the
cmpty set .

The idea of a characteristic function v for a set of players N is
the starting point of the theory of multiperson cooperative games as
introduced in the classical work by von Heumann and lMorgenstern [25].

The pair (N,v) is referred to as a game, or more precisely as an n-person

cooperative game in characteristic functicn (or coalitional) form. However,

no familiarity with aspects of this theory is necessary in order to pursue

the models in this paper.

2.3. Examples. Conszider three players, 1, 2 and 3, who are allowed
to split $10 among themselves in any way they wish as long as a simple
majority (i.e., two or three of the threec plavers) agrees to the split.

This can be represented by the characteristic function v where

v({1}) = v({2}) = v({3}) = 0, and
v({1,2}) = v({1,3}) = v({2,3}) = v({1,2,3}) = 1.
Assume an old house is worth $10,000 to its current owner, $20,000 to
a woman who will turn it into business offices, and $30,000 to a man who

will level it and construct a parking lot. A reasonable representation by

a characteristic function v is

v({1}) = 10,000, v({2}) = v({3}) = v({2,3}) = 0, v({1,2}) = 20,000,

v({1,3}) = 30,000 and wv({1,2,3}) = 30,000.




vhere 1 = owner, 2 = woman and 3 = man. E.g., if 1 and 3 form a coalition,

then 1 can sell the house to 3, and the value of 30,000 will be realized.
Many of the following exercises as well as other examples in this

paper are taken from publications and notes by L. S. Shapley and M. Shubik.

Yany of these will also appear in a beok by them which should be available

at some future time.

Exercises. Determine a characteristic function v for each of the
following game type situations.

(1) Seller and Two Puyers. A parcel of land is worth $100,000 to the

farmer who now owns it, $200,000 to a potential industrial user as a plant
site, and $250,000 to a possible subdivider for a housing tract.

(2) Pure Bargaining or Unanimity Game. A private foundation located

in the state will give the n counties in the state a total (or sum) of
$100,000,000 to be used for research on water pollution control, provided
that all the counties can agree to the final distribution of money ameng
themselves. There must be no complaint by anyone to the state government.
If there is no unanimous agreement, then the foundation will withhold all
of the funds.

(3) Deterrence. Each country i possesses its own wealth Wos and
assume that any one of the n countries is capable of destroying the
total wealth of any number of other countries.

(4) Disposal. It costs each one of six neighboring lumber mills
$10,000 per month to burn its own scrap wood in a huge oven. However,
each company can burn the scrap of any number of mills at the same cost as
burning just its own scrap. First, assume there are no transportation costs.
Second, reconsider this problem and assume a $1,000 expense per month to
ship from any one mill to another. Third, redo this problem when each
company can burn the scrap for up to a total of four companies at the same
cost as just its own, but it reaches its capacity at four.

(5) Post Office. Each one of n citizens must mail $10 to one of
the other citizens.

(6) Each one of Oskar and Otto has two similar right shoes, and each
one of Edmund and Elwood has three such left shoes. A matching pair of

shoecs is worth $30, but any number of unmatched shoes by themselves is

worth nothing.
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(7) The Trecasure of Sierra Madre. A group of n persons discovers

in the mountains a lost treasure of many gold ingots worth $1,000,000 each.
It tekes two people to carry out one ingot, and no one can return for more

than one trip since the word will get out before then.

2.4. Voting Games. In many voting situations the outcome is either a
win cr a loss, either the bill passes or fails to pass. In such voting
games it is common to represent the characteristic function as v(S) =1
when S is a winning coalition and v(S) = 0 when S 1loses. Games with
values of just O or 1 are referred to as simple games.

In many, but not all, such voting schemes, the value v(S) may depend
only upon the number s = ISl of players in the coalition S. Situations
in which the outcome depends only upon the size of S are called symmetric
games. Existence of symmetry or certain other properties may simplify the

listing of a characteristic function for a game.

Exercise. Which games in section 2.3 are symmetric games?

Many voting systems can be represented as weighted majority games in
which there is a quota q and a weight w, for each player i. A coali-
tion S wins whenever Zi(S w, > q. These are represented as

[q,wl;w2,...,wn].

Exercises. Describe the characteristic function for the following
simple games. Also represent these games as weighted majority games (except
for the Canada and Projective Plane games which have no such representation).
Prove that the Projective Plane game has no representation as a weighted
majority game.

(1) Veto Power. Any two (or three) of the three players 1, 2 and 3
can pass a bill except that player 1 has veto power over all legislation.

(2) Majority Rule. An n-person simple game in which a coalition wins

whenever it has more than half of the players.

(3) Australia. The seven-person game in which each of the six states has
one vote, the federal government has two votes (plus one more in the case
of a tie), and majority rules.

(4) U.N. Security Council. B3O T 7 s Txivledsbadshalstclnliqlizdils
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(5) Tompkins County Roard. [8&;5,3,2,1,1,1,1,1].

(6) Canada. The feollowing schzme has been proposed for amending the

Canadian Constitution: veto power is held by Ontario by Quebec, by any

three of the four Atlantic provinces, by the three prairie provinces
together, and by British Columbia along with any one of the prairie prov-

inces. (The federal government also has a veto, but do not consider this part.)

(7) The seven points and seven lines in the simplest finite projective

plane geometry are indicated in the figure. Considzr the points as the

seven players, and assume that a coalition wins if and only if it contains

the three points of some line (including the circle as a "line").

Figure

For more discussion on voting games and power indices, including many
exercises and suggested projects, see the paper by Lucas [14#] and the module
by Straffin [22].

In Appendix III of Farquharson's book [5], he discusses a symmetric
five-person game described by the French writer and political philosopher

J. J. Rousseau (1712-1778) in Du Contract Social (1762) which goes as follows.
The latter is a

(i) There are five (ordinary) players, and a Bank.
"non-strategic player'', but acts to maximize its gains and minimize

losses.




(ii) At each round the players are divided into two teams: a Big Team

of three players and a Smzl) Team of two players. Membership in
the teams ''rotates, so that in the game of ten rounds each player
is in Big Team six times and Small Team four times.

(iii) At each round every player may ncminate one or other of the two
teams.

(iv) The Bank then chooses at each of the ten rmunds any one of the
nominated teams (i.e., a team which obtains at least one nomination),
and pays each of its members $10 and collects $10 from each member
of the other team.

Rousseau considered three caces.

(a2) The State of Nature. Each player always nominates his own team, and

the Bank always chooses Small Team, so that in ten rounds every player will
win four times and lose six times for a net loss of $20 each.

(b) The Social Contract. All five players agree tn form an Assembly,

and to each nominate only the team selected by majority vote on each round.
Each player must obey this "law of the Assembly". If each player votes for
his own team, then only the Big Team is nominated and the Bank will be obliged
to choose it each time. In ten rounds a player wins six times and loses

four times for a net gain of $20.

(c) The Party System. Assume that some m of the players form a

Party in the Assembly, and agree to always vote in the Assembly for the team
in each round which gives the greatest advantage to the party members as

a group. For example, if m = 3 and Small Team has two of the three party
members then it is chosen by the Assembly. In ten rounds, when m = 3,

each Party member wins seven times and loses three times for a net gain of

S40, whereas the nonparty members lose $40 each.

Exercises. (1) Give the characteristic function for this game when the
coalitions act as a Party and the law of the Assembly holds. Recall that
the game consists of ten rounds.

(2) Can you give a brief rationale to explain Rousseau's hostility

to thé existence of political parties.
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3. Some Experiments

3.0. Introduction. In real applications one must perform the frequently
difficult task of determining the set N of n players and the characteristic
function v as well as seeking some sort of "solutions'' for the problem.

On the other hand, one can get a general feeling for problems and pctential
outcomes in this area by first performing scme laboratory or classroom type
experiments in which N and v are given. In this section we will avoid
the chere of selecting a suitable v, and proceed directly to some examples
in vwhich these valuces are knowm.

These examples can be treated as experiments to be run in a classroom
setting. A group of students can act as the players, and they can bargain
among themselves to determine how to split up scme object of value such as
money., some books, or so forth. On the other hand, the typical class is
bardly the ideal place for running such experiments, since there are normally
various disturbances such as time limits, social pressures, imperfect
communication, and so on. WNevertheless, some insights into bargaining
behavior, equity cornsiderations, prejudices, and the dynamics of coalition

formation can often be gained from such crude and poorly run experiments.

3.1. A Simple Majority Game. Let us return to an earlier example
in which there were three players labelled 1, 2 and 3, and the amount of $10
to be given to any coalition of two or three players if this particular
coalition will agree among its members on how to split the $10 between

the three players. The characteristic function v was given as

v({1}) = v({2}) = v({3}) = 0, and

v({1,2}) = v({1,3}) = »({2,3}) = v({1,2,3}) = 10.

This game is referred to in the literature as a three-person simple
majority game or as a three-person constant-sum game. In general a game
is constant-sum if v(S) + v(N-8) = v(N) for all coalitions S. (Recall
that we let v(@) = 0 for the empty coalition @.) This is also an example
of a symmetric game.

The players are allowed to communicate freely and to bargain or arrive

at agreements in whatever way they wish. If no agreement is forthcoming




then each player ends up with nothing. This is sufficient information to
engage in a stimulating classvoom encounter.

One can model this game as follows. The final distribution of wealth
among the three players can be represented by a three-dimensional vector
X = (xl,x2,x3) where x. 1is the payoff to the 3= player, i =1, 2 and 3.
If we assume that money is infinitely divisible, then we can represent all

poscible payoffs by the relation

xl + X, + X, = 10 or O.

We can assume that no player will accept less than zero, i.e., that
x>0 for 1 =1, 2 and 3,
In the formal theory, the set

A = {x: X Xy + Xy = L % > 0h X%

3 2 0

is called the set of imputations. So the problem for the players is to
decide on a vector x in A or else to settle for the n~ncooperative
solution in which each player gets zero.

In most experiments, the resulting outcomes usually approximate either
the midpoint (10/3, 10/3, 10/3), which secems like a natural equity or fair
division solution as suggested by the symmetry of this game, or one of
the three points (5,5,0), (5,0,5) or (0,5,5) for which one of the two-person
("minimal winning") coalitions splits evenlw among themselves and excludes

the remaining player.

3.2. A Veto Power Game. Consider the game

v({1}) = v({2}) = v({3}) = v({2,3}) = 0, and

v({1,2}) = v({1,3}) = v({1,2,3}) = 10
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in which the agreement of two players is necessary to split $10, but player
1 has veto power over any decision. This can also be viewed as a market in
which player 1 has a commodity, and $10 can be created if he sells it to
player 2 or 3.

The set of realizable outcomes x = (xl,x2,x3) is the same as in our
previous example. In practice player 1 tries to play off players 2 and 3
against each other and attempts to settle on some outcome such as (l-e,€,0)
cr (l-€,0,e) which is close to the point (1,0,0), where € denotes a small
positive number. Howaver, if players 2 and 3 join together in a coalition,
then they also posscss veto power in this alliance. So symmetry between
2 and 3 suggest a possible outcome of (10-2a,a,a) where the number a
is in the range 0 < a < 5,

An interesting tale related to this example, in which Walt Disney
imagines playing off a (nonexistant) second banker against his creditor

(the Bank of America), is given in Chapter 9 of the book by John McDonald [17].

3.3 Game with a Core. Consider the three-person game in which

v({1}) = v({2}) = v({3})) = o,

v({1,2}) = 8, v({1,3}) = 6, v({2,3}) = 5 and wv({1,2,3}) = 10.

This can be interpreted as follows. The coalition {1,2,3} has $10 to
split among themselves if they only agree on how to divide it. The
coalition {1,2} can divide up $8 among the three players (usually leaving
player 3 with nothing). And similarly coalitions {1,3} can divide $6,
and {2,3} can split $5. The set of all realizable distribution
(xl,xz,xa) are

o)

= R, ¥ X, & Ty

x
+
X
+
x
]
—
o
o~
x

5, and (0,0,0).

x
+
x
+
x
n
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-
x
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x
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Usually the final outcome is in the set of imputations
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A= {x: x + X, + g = 105 %, >0, i=1, 2 and 3}
since such x ‘'dominate'" any of the other realizable distributions. The
"simplex'" A can be represented geometrically as indicated in either of

the following figures.
X
/‘-2

4
10 (0,10,0)

= .
///// ,f’f—///”’//’/lo =
V (0,0,10) %,=0 (10,0,0)

A8
),
(@]

(&3

For any game (N,v), the set cf all x in A which satisfies the

conditions

zieS Xs > v(s) for all S CN

is czlled the core of the game, and is denoted by C. The core for our

example consists of all x € A such that Xy t %, > 8, Xy + Xy > 6 and

Xy + Ry > 5. It consists of those points in the inverted small triangle

in the following figure.

xl+x2=8 y 1¥%5

o= - =
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The core has vertices (4,4,2), (5,3,2) and (5,4,1).

In experiments with this example the subjects usually do settle on some
point in the core. However, other outcomes can result; e.g., the coaliticn
{1,3} may argue for some point on the dotted line segment joining (5,3,2) to
(13/2.0,7/2).

Exercise. (1) Determine the core C for the two previous examples
in this section.

(2) Discuss vhether the one-point core in the veto power game is likely
to be achieved in experiments.

(3) Describe the core for the three-person game with v({1,2,3}) = 10,
v({1,2}) = 9, w({1,3}) =7, v({2,3}) =4, and v({1}) = v({2}) = v({3}) = O.

(4) Describe the core for some of the games described in section 2,

including some exercises.

3.4. Some Four-person Examples. Consider the four-person game with

v({1,2,3,4}) = 100, w({1,2}) = v({3,4}) = 50, and

v(S) = 0 for all other S ¢ N = {1,2,3,4}.

In practice, players 1 and 2 bargain over how to split the 50, and similarly

coalition {3,4} decides how to divide their 50. The set of imputations is

A = {x: Kyt Xyt Xyt = 100, x; > 0 for i=1, 2, 3 and 4}

and the core is

¢ = {x € A: X, + %, = 50 = %y + %}

This can be interpreted as player 1 has an item which he can sell to player 2

for 50 units. Also, 3 can similarly sell an item to 4. The tetrahedron A

and square C are pictured in the following figure.




=
i

(0,50,0,50)

(50,0,50,0)‘

Consider the extension of the

and 3 can sell to either players 2

economies.

v({1,2})

v({1l,4})

v(T) 50 for all th

v({1,2,3,4}) = 100,

The core now consists of the line s
(0,50,0,50). {1,3}
potential gain, whereas {2,u4}

evenly in most of the profit.

Coalition can

can
Note
each producer to sell at the same "

Two other four-person constant

above game to the case where players 1

or 4. For example, 1 and 3 may each own

a desert full of oil, and 2 and 4 import oil for their industrialized

The characteristic function now becomes

v({2,3}) = v({3,4}) = 50,
ree-person coalitions T,

and v(S) = 0 for all other S CN.

(50,0,50,0) and

form a cartel and split most of the

egment joining points

boycott the market until they share
that the outcomes in the core require
price."

-sum experiments are described in detail

in section 12.3 of Luce and Raiffa [15].
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Exercises. (1) Show that the four-perscn game with

: v({1,2,3}) = v({1,2,4}) = v({1,3,4}) = v({2,3,4}) = 75,
v({1,2,3,4}) = 100, wv({3,4}) = 60, and
v(S) = 0 for all other S €N = {1,2,3,4}

has an empty core.
(2) Show that if +v({3,4}) = 50 (rather than 60) in exercise (1),

then the core iz a single point.

F 3.5. A Rich Aunt. Davis and Maschler [4: pp. 236-242] discuss a five-
person game with a story similar to the following. A rich aunt (player 1)
can enter into a pertnership with any one of four nephews (players 2, 3,

4 and 5), and make 100 units if this pair agrees upon the split. The

only other altermative is for all four nephews to have her declared
incompetent and then obtain the 100 units for themselves. The character-

istic function is

vE{1.21) = wC{L, 3L = vil{1,8)) = v({1,5}) = 100,
v(T) = 100 for any T D {1,i} for i =2, 3, 4 or 5,

v({2,3,4,5}) = 100, and

v(S) = 0 for all other S c N = {1,2,3,4,5}.

The question is what is a reasonable division of 100 between the aunt and
one nephew. The opinions of several well known game theorists were
collected by Davis and Maschler [4]. This game makes for a simple but

interesting experiment.

3.6. References. There is a great volume of literature on game

theory experiments, and it is easy to make up many additional examples.

- _




The interested rcader can consult journals such as Behaviocral Science and

The Journal of Conflict Resolution; e.g., the special issues on game theory

which appeared in Volume 7, No. 1, Jan., 1562 and Volume 6, No. 1, Mar.
1962, »espectively. Other scurces of simple experiments are Part V of

Shubik [21]; Thrall, Cocmbs and Davis [24]; and Maschler's report [16].

4. Some Pollution Models

4.0. Introducticn. A problem of major concern to our modern tezhno-
logically oriented society is pcllution. Many of our industrial activities
produce bad effects such as pcllution and depletion of resources as well as
desired economic and social benefitc. A production process consists of
inputs, intended outputs, and byproducts. The latter are also referved to as
joint-products or externalities. They often have a negative value such as
is the case with pollution, but in some cases they may be of positive
value. One of the ongoing changes in modern society is to hold the producer
responsible for such undesirable effects, i.e., to include such externalities
in their statistics or general bockkeeping, and to be accountable for them.
The problem is to determine the best compromise solution for such endeavors
and how to distribute the resulting costs in an equitable manner. Some
very simple illustrations of how one might begin to model and to gain
insight into such multipercon activities are given in this section. Ve
focus on those aspects of these problems which are concerned with the for-

mation and evaluation of coalitions.

4.1. The Symmetric Lalke Came. An elementary model of lake pollution

has been described by Shapley and Shubik [20]. There are n industrial
plants located along the edge of a particular lake. To simplify this
example, assume that the problem is symmetrical, i.e., each plant has the
same relevant inputs and outputs, and each is affected equally by any
pollution. Assume that each plant must take in the same amount of clean
water from the lake each day, and that it then rcleases this water in a
polluted state back into the lake. The options and costs involved are
as follows.

(i) Each plant must pay c¢ dollars per day to clean its intake water

for each one of the plants (including itself) which are releasing dirty
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water directly into lake. I.e., each one of the n plants pays uc dollars
per day if u of the n plaats are polluting.

(ii) Each plant has the option of installing a filter which will clean
its output water before it enters the lake. The expense of this cleaning
operation is b dollars per day for each company that chooses to do so.

(iii) To make our problem interesting we assume that

0 <ec <b < nc.

‘e also assume that each plant is individually owned and that each owner's
goal is to minimize his costs for each day. None of the owners are fisher-
men nor have other interests in the environment or in conservation.

Some insights may be obtained if we focus on the costs of various
sized coalitions of players. Perhaps the participants can benefit economi-
cally if some of them enter into an agreement to install filters for their
outflows. Ve can assume, for example, that no filters are used currently,
and that the owners realize that potential gains may be realized if they
were to be installed.

(i) An individual player i when acting alone sees his value as

v({i}) = -nc,

i.e., he pays c¢ dollars for each of the n plants which are polluting.
If he alone were to install a filter his costs would increase to (n-l)c + b,
i.e., his value would decrease to -(n-l)c - b.

(ii) On the other hand, if the grand coalition N of all n players
were to form and each agreed to clean his outflow, then the daily value

to the total group would be
v(N) = -nb

since each owner would be paying b each day. So the net social gain due

to cooperation of the full group is




(-nb) - (-n(nc)) = -n(b-nc)

(iii)

important to focus on the value of intermediate sized coalition S

uirich the number of players

tion S

ocutflow; but they must assume that the players in
control will continue to pollute.

two cases in which none or all of the players in

resulting value for the

v(S)

gain the amount

coalition S

s 1is between 1 and n.

is

nfnc~b) > 0.

If it is unlikely that full cooperation can be reached, then it is

in

A cooperating coali-

can decide to have none, some, or all of its playerc clean there

N-S whom they do not

It is sufficient to consider only the

S wuse filters. The

max{-snc, -sb - s(n-s)c}

{

If a coalition S 1is large enough

-snc if s¢ 2 b
-snc + s(sc-b) if sc > b.
(s > b/c), then they can as a group

s(sc-b) > 0 Dby cocpecrating.

benefits for a coalition of smaller size.

A graph of the curve v({(S) versus s

b/c = n/3 appears in the follewing figure.

There are no economic

for the special case when

v(S)
AN
n/3 2n/3 n 4n/3
+— + + + > s
/
4
< 7
7
(n/3,-nb) (n,-nb)
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v(S) = cs2 - (nct+b)s
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Exercises. (1) Verify the intercepts, intersection points, end

points, and vertex for the curves in the figure.
(2) Repeat exercise (1) for other cases such as b/c = n/4 or
b/c = un/5.

When b < nc, then the natural and most equitable "solution' to
this geme is for each owner to inst~1ll a filter at a cost of b dollars
per day to each. The imputation (-b,~b,...,-b) is in the core of this

game, i.e., no coalition S c¢an achieve more than -sb by acting on its

cwn. The core of this game is a rather large set as is the case for the

class of "convex" games which includes this example. Note that as s

increases the amount that each additional player contributes to a coalition

also increases when s > b/c. This incremental quantity is negative at i

first but becomes positive for valuec of s to the right of the vertex of

the parabola ir our figure. This is the well known bandwagon or snow-

balling effect. If a player cbtains precisely that gain which he brings

to a coalition when he joins it, then he should hold out as long as possible.
Note that any agreem2nt to install filters is one that must be veri-

fiable by some sort of inspection procedure. Otherwise, a particular

player may decide to not filter and thus pay only c rather than b.

This will also cost every other player the amount c. So our cooperative

agreement is "unstable" in this sense. This type of situation is an

example of the famous "Prisoner's Dilemma" game mentioned below.

Excrcises. (1) Consider the Lake Pocllution game when the cost to
clean the intake water is only (u-l)c for each player where u is the
number of polluters. TI.e., the lake has the ability to clean up the
pollution caused by one of the polluting factories. Determine the core
for this game. What would be the most economical and fair "solution"
to this game.

(2) Construct an example of a nonsymmetrical lake pollution game in
which different plant capacities cause different costs ¢ and bi to
clean inflows and outflows. Analyze this game and recommend an equitable
solution.

(3) The lake game is an example of diffuse pollution. Often pollution

can be voluntarily directed towards another active participant or a bystander.




Consider the Symnetric Garbage Came in which each of the n players has

cne bag of garbage which he nust dispose of by droppinz it in another
player's yard. The payoff to any player is -u if u other players
dispose of their garbage in his yard. Determine the characteristic
function value v(S) for each coalition S of s players. Is the core
of this geme empty or not? Is this game constant-sum? What do you expect

to happen?

4.2. The River Game. If our pelluting factories are located along

a flowing river, then we have an example of involuntary directed pollution.
EFach plant intakes water that has b-en polluted by the plants upstream,
whereas each owner releases his 4’ tv water on only those plants which
are downstream from his. A simple example of this sort appears on pages
355 to 358 in the book by McDonald [17].

llcDonald then goes on in his Chapter 14 to discuss the 0il Game in
Maine in a nontechnical manner but in the terminology of cooperative
multiperson games. There are great economic benefits available to certain
groups in the State of Maine and elsewhere if oil refineries and ports for
supertankers are dcveloped there, where they have the only natural deep
water facilities on the eastern or southern coasts of the United States.
On the other hand, encrmous environmental, social or econcmic costs may
also result. This case is somewvhat like the river game since the currents
(and thus an oil slick) flow southward along the coast from the Canadian

provinces above (which can independently expand their ports) down to Cape Cod.

Exercises. (1) Analyze some river pollution games for various values
of n in which the costs to clean inflow for the similar plants depend
upon the number of upstream polluters, and the cost for one plant to
clean its outflow is b. In each case, recommend "reasonable" solutions.
Plants downstream may wish to subsidize those upstream if the latter filter
their discharge.

(2) Analyze some examples like (1) in which the plants have different

capacities, and thus different costs to clean inflow or outflow.




A recent educational mcdule by Heaney [38] discusses how three cities
aleng a river can reduce their total sewecrase costs by cooperation, and
how such savings could be distributed. His models do not assume additive
polluticn as those @bove. Heaney has applied such models to real situa-
tions in the State of Florida. Some game theory solution concepts have
also been proposed to allocate costs for a water resource development project
in Japan [23]. Scme other mathematical models for water pollution appear in
several recent books, e.g., [3] and [10].

In the area of Ithaca, New York there have been recent intercommunity
cooperative efforts in constructing a sewer system as well as a new water
supply system. In the latter case the Town of Ithaca went independently
of the City of Ithaca. As a result, both communities are now paying very
much higher water bills in this example of noncooperative behavior. It
would be an interesting project to study other possible solutions for this
game (which has unfortunately already been plaved out) to see what savings
would have been possible and how they could have been distributed in an
equitable manner. The reader may be able to find such problems suitable

for projects in communities located near his residence.

4.3. Other Pollution Models. In their paper [20], Shapley and Shubik

also describe a problem in which the inputs are ore and coke and the outputs

are iron plus a dirty cloud of smoke. In this Smelting Game the group paycff

is proportional to the number of units of iron produced by them diminished
slightly by the amount of smoke in the air. Some players begin with ore and
others with coke. This example is another case involving diffuse pollution.
Vhether this game has an empty core or not depends in a nontrivial way upon
the number and types of players involved as well as on the cost of the
diseconomy smoke. Analyzing these cases and reconmending reasonable or
likely solutions make for interesting class modeling problems. Several
extensions and variations of this game to nonsymmetric cases, directed
(downwind) pollution, and so forth can easily be created. K.O. Kortanek
and others at Carnegie Mellon University propose in some reports how a game
theory solution concept called nucleoli can be employed to tax air polluters.
Many pollution problems, as well as a great number of other social

interactions, can be modeled as n-persen Prisoner's Dilemma games. The
P g




famous two-person prisoner's dilemma is due to A. W. Tucker in 1950 and
is discussed in a multitude of publicctions. There ars many ways in
which the two-person case can be generalized to the multiperson games,
and a fine analysis of this appears in the article by Hamburger [8]. By
irtroducing different interpretations for his cases, one can generate a

. great number of modeling exercises and projects. The n-person prisoner's
dilemma and repeated play of such gumes model what are probably among the

most frequently occurring activities in every day social interactions.
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5. Equitable User's Fees

5.0. Introduction. There are many instances in which some service is

provided to different types of users, and one wishes to charge a user's

fee to recover some or all of the expense of operating the service facility.
If there are different sorts of customers who use the facility to different

extents then it is reasonable to vary the charges or taxes to them according
to how little or much of the service they may use. The problem is how to ;
assess such fees in an equitable way. One wishes to distribute the cost
fairly relative to usage in such a way as to recover a cortain known level :
of expenditures. Such problems frequently arise in the public domain, in i

services such as transportation and communicaticns, where the provider of

the service would like to merely recoup the expenses required for maintaining
the facilities without making a profit.

Sometimes the service and rates already ewxist, but some change in
technolcogy or the number of users creates a surplus profit or new deficit.
The question then becomes one of how the customers should share in such
gains or losses. lMany classical economic arguments about the marginal
cost caused by each user do not seem fair and such schemes may not generate
the level of income desired. Some examples, along with some coalitional

considerations, are given in this section.

5.1. Airport Landing Fees